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Estimating Per-Locus Mutation Rates 
 
John F. Chandler 
 
Abstract 
 

Relative per-locus mutation rates for Y-DNA microsatellites, and also for mitochondrial DNA single-
nucleotide polymorphisms, can be estimated directly from diverse collections of haplotypes without 
segregating population components.  The calibrated average mutation rates for the FTDNA panels of 12, 
25, and 37 loci are 0.00187±0.00028, 0.00278±0.00042, and 0.00492±0.00074, respectively, from a 
collection of haplotypes from Y-Search. The individual per-locus rates are given here. 

Introduction 

The task of estimating mutation rates for human DNA is 
troublesome, whether for individual loci or for averages 
over panels of loci.  The mutations are so infrequent, and 
the generation spans so long, that direct observation of a 
statistically useful sample is expensive and time-
consuming.  Nonetheless, these rates are of great interest 
in genetic genealogy and related fields.  Techniques for 
circumventing this basic difficulty to gather the necessary 
data include: “piggybacking” on paternity tests (Gusmão 
et al. 2005), testing judiciously chosen subjects with 
interconnected, deep-rooted pedigrees (Heyer et al. 
1997), and sifting large, heterogeneous collections of 
measured haplotypes using statistical models to extract 
the mutation rates from the other information present 
(Zhivotovsky et al. 2004; Hutchison et al. 2004).  The 
latter technique needs calibration, but can be applied to 
data collected for other purposes.  Indeed, the very same 
DNA testing that demands knowledge of the mutation 
rates for interpreting the results can lead to the 
determination of those rates.  Of particular interest is the 
technique introduced by Hutchison et al (2004) of 
sorting pairs of haplotypes by closeness and extracting 
information from the match profiles.  This technique 
requires a cumbersome extra step of identifying and 
isolating a sub-population and depends on the dangerous 
assumption that the chosen sub-population is entirely 
characterized by a single time depth, but there is a 
simpler method that avoids these problems.  In this 
paper, I develop expressions for the “mutation model 
curve” (MMC) of Hutchison et al. (2004) and outline a 
procedure for using the high-match end of the MMC for 
extracting mutation rates.  Throughout this paper, the 
mutation rates are assumed to be independent of time, 
environment, and haplotype.  Since these assumptions 
may be false, especially the last (Dupuy et al. 2004), the 
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results must be taken in the context of the data 
considered.  Of these factors, only haplotype is 
potentially accessible to a more detailed analysis of 
currently existing data. 

Mathematical Model 

First, we must define a function )(gp j  as the 

probability that all loci, except locus j, match between 
two haplotypes separated by a total of g generations.  
Each haplotype consists of N loci, each locus j with a 
different mutation rate given by jµ . If we assume the 

mutation rates are small, we may approximate mutation 
probabilities by an exponential function.  In terms of the 
infinite alleles model, we would write the probability of a 
single locus j remaining at the ancestral allele after g 
generations as )exp( jgµ− , while the probability of a 

mutation at that locus would be )exp(1 jgµ−− .  Then 

jp  is just the product of the N individual probabilities 

at the N loci: 
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where the second line of Equation 1 comes from 
multiplying and dividing the first by )exp( jgµ .  Note 

that g, the separation between two haplotypes, can be 
viewed either as the number of generations from an 
ancestor being compared to a particular descendant or as 
the “round-trip” number of generations from one person 
back to a shared ancestor and then forward to the 
contemporary being compared.  Since most DNA testing 
is done on living individuals, the latter interpretation of g 
is more commonly applicable, but the former is equally 
valid.  In the limit of small ,µg  the choice of mutation 
model is unimportant, and, to leading order in the small 
parameters, we would have for either the infinite alleles 
model or the stepwise mutation model: 
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)()( gQggp jj µ=               2 

where Q(g) is the probability of a match on all loci in 
whichever model.  Similarly, we may write the 
probability that two haplotypes match at all loci except j, 
k, and l as 

)()( 3 gQggp lkjjkl µµµ=   3 

and so on for any number of mismatching loci.  Next we 
need an expression for the probability that a mutation 
has occurred at some number of loci, b, while the 
remainder have remained at the ancestral alleles.  As an 
example, consider the case where exactly three loci (any 
three) out of a total of five loci, have mutated.  The 
probability of this occurring is just the sum of the 
probabilities of all possible triplets of mutating loci (each 
given by Equation 3): 
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where we define )(bC  as the sum of all products of b 

distinct elements of the set }{ iµ . For the general case, 

the probability that b loci out of N have mutated is given 
by 

)()(),( gQbCggbM b=                     5 

Now consider the probability that a particular locus has 
mutated along with any two others, i.e., the probability 
of a mismatch at the specified locus when all but three of 
the loci match.  This probability is similar to that shown 
in Equation 4, except that the sum within the brackets 
includes only those terms that contain, say, µ1.  That is 
(continuing to use the example of b=3 and N=5), the 
probability is given by 
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where we define a function )1( −bjC as the sum of all 

products of b-1 distinct elements of the set },{ jii ≠µ . 

The limiting case for both this new function and the 
original unsubscripted C  is defined as C(0) = 1. Thus, 
the probability of a mismatch at locus j when all but b of 

the loci match, given a separation of g generations, can 
be written as 

)()1(),( gQbCggbM jj
b

j −= µ   7 

where b must be greater than 0, since locus j is a 
mismatch by definition.  Clearly, the probability must 
vanish when b is 0.  In general, we must deal with a 
population of haplotype pairs with a range of 
separations, and we thus must calculate )(bD j , the 

overall probability of a mismatch at locus j for the whole 
population when all but b of the loci match. We do so by 
weighting the probability in Equation 7 by the fraction 

)(gf  of the population of pairs having a separation of g 
generations and summing over g: 

∑−=
g

b
jjj gQggfbCbD )()()1()( µ   8 

Similarly, we may write D(b), the total probability of b 
mismatches, in the same population as 

∑=
g

b gQggfbCbD )()()()(           9 

 
The salient feature of Equations 8 and 9 is the fact that 
they share a common factor encapsulating the unknown 
population statistics )(gf , and thus these equations 
differ only in terms that depend just on the mutation 
rates.  It is therefore useful to define a mismatch profile 
function 

)(
)1(

)(
)(

)(

bC
bC

bD
bD

bP

jj

j
j

−
=

≡

µ
   10 

 
This function is the conditional probability of a 
mismatch on locus j, given b mismatches in all. This is 
directly related to the MMC as defined by Hutchison et 
al. (2004); their niM ,  (probability of a match at locus i 

given n matches) is just )(1 nNiP −− .  By construction, 

0)0( =jP  and 1)( =NjP , since no locus can mismatch if 

the number of mismatches is 0, and every locus must 
mismatch if the number is N.  Of course, the MMC will 
depart increasingly from Equation 10 as b grows beyond 
the linear limits assumed in Equation 2, since the 
population structure will contribute differently to the 
non-linear terms omitted from Equations 8 and 9. 
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Equation 10 can be inverted to give an expression for the 
mutation rate in terms of the (observed) mismatch 
profiles and the C  functions: 
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Of course, Equation 11 is recursive, in that the C values 
depend on the mutation rates, but it can serve as the 
basis for an iterative procedure for calculating the rates.  
The definition of C involves combinations of many 
terms—so many that the direct computation becomes 
prohibitive at relatively modest values of b and N.  It can 
be shown that C obeys the recursion relation 
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In the trivial case where the individual mutation rates are 
all the same, Equation 12 simplifies to 
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where µ  is the uniform mutation rate, and the 
parentheses indicate binomial coefficients, where the 
coefficient “N take b” stands for N!/(b![N-b]!). Also, 
Equation 10 simplifies to 

N
bbPj =)(    15 

Thus, in the absence of population structure, the MMC 
for uniform mutation rates would be straight lines from 
the (0, 0) to (N, 1), exactly as one would expect. This 
simple linear form suggests a practical iterative procedure 
for determining the relative mutation rates from the 
mismatch profiles: 
 

1) Choose a suitable value b as large as possible, 
but small enough that the mismatch functions 
are small compared to 1.  

2) From the data, find the values )(bPj  for all loci 

j. 

3) Initialize the mutation rate estimates 
to )(brPjj =µ , where r is a normalization 

factor chosen to give values in a convenient 
range.  (Since we have cancelled out the 
population statistics, it is clear that we can 
obtain only relative rates from this analysis, and 
so the normalization is arbitrary.) 

4) Use the mutation rate estimates to evaluate 
Equations 13, 12, and 11 to obtain a new set of 
estimated rates. 

5) Repeat Step 4 until convergence. 
6) Repeat Steps 2-5 for all values of b from 1 to the 

value chosen in Step 1 and take a weighted 
average of the mutation rate estimates. (See 
below for a discussion of error analysis.) 

 
Error analysis 
Analyzing data in pairs instead of singly introduces 
correlations between pairs with shared observations.  
Thus, a proper error analysis of this procedure would be 
complicated by the need to deal with all pairs of 
observations.  Indeed, correlations  could even bias the 
results.  However, since the mismatch profiles are 
computed on restricted subsets of the pairs, the pair-to-
pair correlation within each bin is greatly reduced.  Thus, 
a simple error analysis treating each pair as an 
independent observable should suffice, with just one 
modification. Normally, the least-squares estimate of a 
probability p from statistics of a population of N cases 
carries an uncertainty of {p(1-p)/N}0.5, but the relevant N 
here must be the lesser of the number of pairs found in a 
given b-bin and the total number of haplotypes, since the 
latter is the number of independent data. The 
uncertainties for the mismatch probability are scaled to 
mutation rate uncertainties as in Equation 11, and these 
in turn are used as the relative weights for the weighted 
average described in Step 6 above (in the usual inverse-
square sense). 
 
Calibration 
The final component of this analysis is the calibration for 
converting the relative mutation rates to absolute rates.  
Pedigree-based rate determinations offer the advantage of 
“leverage,” whereby each test subject carries an 
accumulation of mutations over many generations 
(though not so many that multiple mutations on any one 
locus would be an issue).  However, the collection of 
pedigree data from volunteers who already know the 
results of the DNA tests leads to serious risks of selection 
bias in the data.  At present, the only reliable large 
collection of mutation statistics for Y-DNA 
microsatellites is that collected from father-son pair 
studies by Gusmão et al. (2005).  To make use of such 
statistics, we must simultaneously fit the observables ik  

(number of mutations for locus i in the calibration data) 
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and iµ  (the “observed” relative mutation rate) with a 

simple model by weighted-least-squares analysis: 

ii

iii

cm
nmk

=
=

µ
    16 

where im  is the absolute mutation rate for locus i, c is 

the calibration factor between relative and absolute rates, 
and in  is the number of meioses for locus i in the 

calibration data.  A third relation using iµ′ and c′ can be 

used to include a second, independent set of rate 
estimates in the analysis.  
 
Application to Y-STRs 
 
I have applied this procedure to a collection of 8430 Y 
haplotypes downloaded from Ysearch in July of 2006 as 
a demonstration.  In the parlance of Ysearch, each 
haplotype consists of 37 loci, but this set includes five 
multi-copy loci, such that the number of independent loci 
is only 30.  Each copy of a multi-copy locus in one 
haplotype must match the corresponding copy in the 
other haplotype if the locus is to be considered a match.  
This grouping of the loci avoids the necessity of guessing 
which copy corresponds to which in the two haplotypes 
being compared.  About half of the collection belongs to 
haplogroup R1b as specified by the contributors, and the 
other half is an assortment of other haplogroups. 
 
Most of the information carried by this collection is 
filtered out in Step 1 of the analysis, since only nearly-
matching pairs are considered.  In Figure 1 and in each 
panel of Figure 2, there is a vertical line marking the 
lower limit of matching used in Steps 2-6, and it is 
apparent from Figure 1 that only a tiny fraction of the 
pairs is included.  The tall peak on the left of Figure 1 
represents the “typical” inter-haplogroup comparison 
and is thus characteristic of the particular mix of 
haplogroups included in the data collection.  The peak 
for this collection is at 7/30 matching and thus 
corresponds to a very old population.  The slightly 
smaller peak on the right represents the “typical” within-
haplogroup comparison, mainly the comparison within 
R1b, which dominates this collection.  It should be 
possible to gather collections whose histograms would 
show more than two peaks by focusing on distinctive 
clades within haplogroups.  However, as noted above, 
the information contained in the peaks of Figure 1 is 
ignored in the present analysis. 
 
Examination of Figure 2 shows that the “ideal” straight-
line MMC indicated by Equation 15 is seldom realized.  
Indeed, it can be shown that, even in the absence of  
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Figure 1. Histogram of matches among pairs of 8430 Y 
haplotypes, each consisting of 30 microsatellite loci. 

 
population structure (such as is strikingly revealed in 
Figure 1), the MMC based on Equation 10 is generally 
curved when the locus-specific mutation rates are not the 
same.  The curvature is positive for loci with below-
average mutation rates and negative for loci with above-
average rates.  Attempting to fit straight lines to the 
MMCs without taking this curvature into account would 
tend to compress the apparent dynamic range of 
mutation rates, thus reducing the estimates of high rates 
and raising the estimates of low rates. 
 
The results of the analysis for this collection of Y 
haplotypes, combined with an independent set of 6955 
20-locus Ysearch haplotypes, are presented in Table 1.  
These results include the calibration of Equation 16, and 
the uncertainties shown here include the contribution of 
the calibration and the level of agreement between the 
20- and 30-locus sets.  However, the error analysis here 
makes no provision for the uncertainties due to the 
assumption of constant rates. 
 
The average mutation rate for these loci, considered as 
37 loci in Ysearch terms, is 0.00492±0.00074 mutation 
per locus per generation.  In contrast, the average rates 
for the first 12 and the first 25 are 0.00187±0.00028 and 
0.00278±0.00042, respectively.  The extreme cases, 
CDYa and CDYb, are thus about seven times as fast as 
the average for all 37, while DYS426 is about 1/50 as 
fast.  The uncertainties for the average rates are the 
statistical standard deviations, scaled such that χ2 per 
degree of freedom is unity.  They include the effect of the 
correlations introduced by scaling each whole set of 
relative mutation rates with a common calibration factor 
and by multiple-counting the multi-copy loci.  The 
uncertainties are thus about triple the corresponding
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Figure 2. Mutation model curves for 30 Y microsatellite loci computed from 8430 haplotypes.  Each panel plots the 
probability of a match for the specified locus over the range from 0 to 30 matching loci. The panel labels are 
abbreviated by omitting “DYS.” 

 
normalized root-sum-squares of the individual per-locus 
standard deviations.  Not surprisingly, the 12-locus 
average has the smallest uncertainty: 11 of the 12 are 
“anchored” by calibration data.  Also, the per-locus 
standard deviations have a component which varies as 
the square-root of the mutation rate, and thus the 
composite uncertainties should also be smaller for 
smaller average rates. 
 

Another unsurprising result is that the fits agree rather 
well with the calibration data – the exceptions being 
mainly those loci with the fewest father-son pairs, such 
as DYS388 and DYS437.  These fits, however, are at 
odds with previous analyses using the method of 
Hutchison et al. (2004), in that the range of rates is now 
wider because of the proper accounting for MMC 
curvature, as noted above.  Comparison with analyses of  
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Table 1. Calibration data and final results for absolute mutation rates (per copy for multi-copy loci, indicated 
by asterisks). Weighted fit to 6955 20-locus and 8340 30-locus haplotypes. 

Locus Calibration 
data 

Best fit Std. dev. Locus Calibra-
tion data 

Best fit Std. dev. 

DYS393 0.00075 0.00076 0.00014 DYS447  0.00264 0.00041 
DYS390 0.00227 0.00311 0.00048 DYS437 0.00222 0.00099 0.00017 
DYS19 0.00168 0.00151 0.00025 DYS448  0.00135 0.00020 
DYS391 0.00351 0.00265 0.00041 DYS449  0.00838 0.00128 
DYS385 * 0.00224 0.00226 0.00035 DYS464 *  0.00566 0.00087 
DYS426  0.00009 0.00002 DYS460 0.00450 0.00402 0.00069 
DYS388 0.00057 0.00022 0.00004 Y-GATA-H4 0.00290 0.00208 0.00033 
DYS439 0.00530 0.00477 0.00073 YCAII * 0.00000 0.00123 0.00019 
DYS389i 0.00188 0.00186 0.00028 DYS456  0.00735 0.00115 
DYS392 0.00061 0.00052 0.00010 DYS607  0.00411 0.00066 
DYS389ii 0.00226 0.00242 0.00041 DYS576  0.01022 0.00167 
DYS458  0.00814 0.00124 DYS570  0.00790 0.00138 
DYS459 *  0.00132 0.00021 CDY *  0.03531 0.00549 
DYS455  0.00016 0.00004 DYS442  0.00324 0.00051 
DYS454  0.00016 0.00003 DYS438 0.00044 0.00055 0.00012 

 
 
volunteer-driven, pedigree-based data is unprofitable 
because of the unknown biases associated with the latter. 

Application to mtDNA 

The same analysis can be applied to mitochondrial DNA, 
but there are too many base pairs in the standard HVR 
sequences (1143 in the HVR1+HVR2 test offered by 
Family Tree DNA) to treat them all as separate loci here.  
Dealing with compound loci consisting of 20 base pairs 
each will keep the number of loci down to a manageable 
58.  I downloaded 2717 such haplotypes from 
Mitosearch in April of 2006 and treated them in the 
same way as the Y DNA haplotypes above, except that I 
have no corresponding calibration data from direct 
observation.  The results are therefore expressed with an 
arbitrary scale factor to give an average rate of 0.0001 
mutation per generation per (compound) locus.  It is 
worth noting that the histogram of matches, shown in 
Figure 3, is very different from that in Figure 1.  There is 
only one peak in the distribution, and the “tail” of that 
peak is still significantly above zero all the way to perfect 
matches.  In other words, perfect matches are not at all 
uncommon, and there is no obvious separation of 
population components. 
 
The results of the mtDNA analysis are shown in Table 2, 
with each compound locus labeled by the position of its 
last base pair.  Within the resolution of this analysis, four 
of the loci show no mutability at all, and seven others are 
at or below 1% of the average rate. (Of course, two loci 
are shorter than 20 base pairs, being 9 and 14, 
respectively, and both of these figure in the extreme low 
rate lists.)  At the high end, the locus 301-320 is about 
14 times as fast as the average. 
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Figure 3. Histogram of matching among pairs of 
2717 mtDNA haplotypes 
 
Conclusion 
 
In the Spring of 2006, Family Tree DNA introduced an 
additional panel consisting of 30 Y DNA microsatellite 
loci beyond the 37 analyzed here.  At the time of this 
writing, there are hundreds, though not thousands, of 
completed tests delivered to customers and potentially 
available for analysis.  In the near future, it should be 
possible to apply the method described here to these 
extended haplotypes and estimate the rates of all tested 
loci. 
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Web Resources 

www.ysearch.org Y-STR database 
www.mitosearch.org mtDNA database 
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      Table 2  Normalized mutation rates for compound mtDNA loci 

Last 
base 

Best Fit Std. Dev. Last base Best Fit Std. Dev. 

16020 0.00000000 0.00000000 20 0.00000138 0.00000026 
16040 0.00000005 0.00000002 40 0.00000078 0.00000011 
16060 0.00001345 0.00000133 60 0.00000637 0.00000065 
16080 0.00002193 0.00000356 80 0.00025204 0.00008546 
16100 0.00008002 0.00000897 100 0.00002812 0.00000395 
16120 0.00002868 0.00000475 120 0.00001461 0.00000164 
16140 0.00022024 0.00001290 140 0.00000426 0.00000049 
16160 0.00004133 0.00000467 160 0.00044132 0.00001566 
16180 0.00011192 0.00000279 180 0.00000350 0.00000037 
16200 0.00025233 0.00001461 200 0.00015501 0.00001005 
16220 0.00007979 0.00000200 220 0.00002686 0.00000293 
16240 0.00020343 0.00001573 240 0.00003063 0.00000322 
16260 0.00007544 0.00000295 260 0.00001839 0.00000087 
16280 0.00015686 0.00000603 280 0.00031359 0.00006351 
16300 0.00035193 0.00003702 300 0.00001306 0.00000066 
16320 0.00036923 0.00004056 320 0.00143273 0.00011906 
16340 0.00002024 0.00000236 340 0.00001092 0.00000055 
16360 0.00006397 0.00000324 360 0.00000021 0.00000002 
16380 0.00005363 0.00000566 380 0.00000137 0.00000050 
16400 0.00003918 0.00000701 400 0.00000210 0.00000025 
16420 0.00000000 0.00000000 420 0.00000496 0.00000103 
16440 0.00000100 0.00000007 440 0.00000006 0.00000003 
16460 0.00000000 0.00000000 460 0.00004121 0.00000543 
16480 0.00000540 0.00000086 480 0.00007197 0.00001360 
16500 0.00001821 0.00000436 500 0.00005288 0.00001276 
16520 0.00048480 0.00005062 520 0.00001667 0.00000081 
16540 0.00001170 0.00000168 540 0.00014729 0.00000356 
16560 0.00000002 0.00000001 560 0.00000237 0.00000030 
16569 0.00000000 0.00000000 574 0.00000058 0.00000009 

 
 


